

Pype9

“PYthon PipelinEs for 9ml (Pype9)” is a collection of Python pipelines to
simulate neuron, and neuron network, models described in NineML [http://nineml.net] using either
Neuron [http://neuron.yale.edu] or NEST [http://nest-simulator.org] as simulator backends.

Pype9 has a Command Line Interface (CLI), which allows experiments to be
simulated directly from NineML [http://nineml.net] descriptions (i.e. without scripting).
Alternatively, simulations can be embedded within Python scripts with
Pype9’s accessible Public API.

User/Developer Guide

	Installation
	Simulator Backends

	Command Line Interface
	Simulate

	Plot

	Convert

	Help

	Creating Simulations in Python
	Simulation Control

	Cell Simulations

	Network Simulations

	Public API
	Simulation

	CellMetaClass

	Cell

	Network

	ComponentArray

	Selection

	ConnectionGroup

	Developer Documentation
	Additional Simulator Backends

	Additional Pipelines

	Unsupported 9ML

	Getting help

Installation

Pype9 itself is a pure Python application and can be installed from the
Python Package Index (PyPI) [http://pypi.org] with Pip [http://pip.pypa.io]:

$ pip install pype9

If you would like to use the plot command you will also need
to install matplotlib, which can be done separately or by specifying
the ‘plot’ extra:

$ pip install pype9[plot]

With just the Python packages installed you will be able to use the
convert and plot pipelines but in order to run simulations with
Pype9 you will need to install at least one of the supported simulator
backends (see below).

Simulator Backends

Pype9 currently works with the following simulator backends

	Neuron [http://neuron.yale.edu] >= 7.5

	NEST [http://nest-simulator.org] >= 2.14.0

There are various configurations in which to install them, with the
best choice dependent on your operating system/development
configuration and your own personal preference.

Manual Installation from Source (Linux/MacOS)

Detailed instructions on how to install NEST [http://nest-simulator.org] can be found on the
official NEST docs [http://www.nest-simulator.org/installation/].

Good instructions on how to install Neuron [http://neuron.yale.edu] from source can be found in
Andrew Davisons notes [http://www.davison.webfactional.com/notes/installation-neuron-python/].

Homebrew/Linuxbrew (MacOS/Linux)

Homebrew [https://brew.sh] is a package manager that was developed for MacOS, but which
has proven so successful that it has been ported to Linux (Linuxbrew)
to complement in-built package managers (Linuxbrew installs packages
to a users home directory).

The Pype9 command line interface (CLI), Neuron [http://neuron.yale.edu] and NEST [http://nest-simulator.org] can all be
installed using Homebrew [https://brew.sh] in one line with:

$ brew install tclose/pype9/pype9

The following options can be provided to the formula

	with-python3 - Install Pype9, Neuron [http://neuron.yale.edu] and NEST [http://nest-simulator.org] using Python 3

	with-mpi - Install Pype9, Neuron [http://neuron.yale.edu] and NEST [http://nest-simulator.org] with MPI support

Warning

As of 2.14.0 NEST will need to be reinstalled using
brew reinstall NEST --HEAD in order to include commit
that installs the required C++ header files to the install
prefix (instead of leaving them in the build directory,
which is deleted after the build). In future versions of
NEST this step will not be necessary.

Note that this Homebrew [https://brew.sh] formula installs the Pype9 package and all its
Python dependencies in a virtual environment inside the Homebrew [https://brew.sh]
Cellar. Therefore, if you would like to access Pype9’s Python API you
should only install the Neuron [http://neuron.yale.edu] and NEST [http://nest-simulator.org] dependencies via Homebrew [https://brew.sh]
and Pype9 and its Python dependencies via Pip [http://pip.pypa.io]:

$ brew install --only-dependencies tclose/pype9/pype9
$ pip install pype9

or for Python 3:

$ brew install --only-dependencies tclose/pype9/pype9 --with-python3
$ pip3 install pype9

Please see the notes on how Homebrew handles Python [https://docs.brew.sh/Homebrew-and-Python.html], to ensure that
you use the same installation for Neuron [http://neuron.yale.edu], NEST [http://nest-simulator.org] and Pype9, taking
special note of the sections on bottling if not passing options to the
build (i.e. --with-python3 or --with-mpi).

If you don’t have a strong preference for which Python you use I
would recommend using a Homebrew [https://brew.sh] Python installation (either 2 or 3,
but probably 3 is best since support for Python 2 ends in 2020) as the
system Python on MacOS has been slightly altered and can break some
packages.

Note

To set Hombrew’s Python 2 to be the default Python used from
your terminal add /opt/brew/opt/python/libexec/bin to
your PATH variable.

Install scripts (Linux/MacOS)

To install Neuron [http://neuron.yale.edu] and NEST [http://nest-simulator.org] from source you can use the scripts that
Pype9 uses to set up its automated testing environment, which can be
found in the install directory of the Pype9 repo. For example, to
install NEST [http://nest-simulator.org] 2.14.0 with Python 3 bindings to the prefix
/opt/nest/2.14.0:

$ wget https://raw.githubusercontent.com/tclose/pype9/develop/install/nest.sh
$./nest.sh 2.14.0 3 /opt/nest/2.14.0

or Neuron [http://neuron.yale.edu] 7.5:

$ wget https://raw.githubusercontent.com/tclose/pype9/develop/install/neuron.sh
$./neuron.sh 7.5 3 /opt/neuron/7.5

These install scripts also work well within a virtualenv [https://virtualenv.pypa.io/en/stable/], where they
will install NEST [http://nest-simulator.org] and Neuron [http://neuron.yale.edu] to the virtualenv [https://virtualenv.pypa.io/en/stable/] prefix by default.
This allows you to maintain different versions of Neuron [http://neuron.yale.edu], NEST [http://nest-simulator.org] on
your system, which is useful when upgrading.

When installing to a virtualenv [https://virtualenv.pypa.io/en/stable/], the Python version and install prefix
don’t need to be supplied to the install scripts:

$ wget https://raw.githubusercontent.com/tclose/pype9/develop/install/nest.sh
$ wget https://raw.githubusercontent.com/tclose/pype9/develop/install/neuron.sh
$ pip install virtualenvwrapper
$ mkvirtualenv -p python3 pype9
$./nest.sh 2.14.0
$./neuron.sh 7.5

On Ubuntu, the installation requires the following packages

	build-essential

	autoconf

	automake

	libtool

	libreadline6-dev

	libncurses5-dev

	libgsl0-dev

	python-dev

	python3-dev

	openmpi-bin

	libopenmpi-dev

	inkscape

	libhdf5-serial-dev

	libyaml-dev

Similar packages can be found in other package managers on other
distributions/systems (e.g. Homebrew [https://brew.sh]).

Docker (Windows/Linux/MacOS)

A complete installation of Neuron [http://neuron.yale.edu], NEST [http://nest-simulator.org] and Pype9 (with MPI and
against Python 3) can be found on the Docker image,
https://hub.docker.com/r/tclose/pype9.

	Install Docker (see https://docs.docker.com/engine/installation/)

	Pull the Pype9 Docker image:

$ docker pull tclose/pype9

	Create a Docker container from the downloaded image:

$ docker run -v `pwd`/<your-local-output-dir>:/home/docker/output \
 -t -i tclose/pype9 /bin/bash

This will create a folder called <your-local-output-dir> in the
directory you are running the docker container, which you can access
from your host computer (i.e. outside of the container) and view the
output figures from.

	From inside the running container, you will be able to run pype9,
e.g.:

(pype9)docker@b3eca79b5209:~$ pype9 simulate \
 ~/catalog/neuron/HodgkinHuxley.xml#PyNNHodgkinHuxleyProperties \
 nest 500.0 0.001 \
 --init_value v 65 mV \
 --init_value m 0.0 unitless \
 --init_value h 1.0 unitless \
 --init_value n 0.0 unitless \
 --record v ~/output/hh-v.neo.pkl

(pype9)docker@b3eca79b5209:~$ pype9 plot ~/output/hh-v.neo.pkl \
 --save ~/output/hh-v.png

Supply the –help option to see a full list of options for each
example.

5. Edit the xml descriptions in the ~/catalog directory to alter the
simulated models as desired.

Command Line Interface

The Pype9 command line interface will be installed on your system path when
Pype9 is installed with Pip [http://pip.pypa.io] (see Installation), otherwise it can be
found in the bin directory of the repository.

In a similar style to many popular command line tools (e.g. Git [http://git-scm.com/], Pip [http://pip.pypa.io],
Homebrew [http://brew.sh], etc..) there is a single command, pype9, which is used to switch
between different pipelines, i.e.:

$ pype9 <cmd> <options> <args>

There are currently four pipeline switches:

	simulate

	plot

	convert

	help

Simulate

Simulates a single cell defined by a 9ML Dynamics or DynamicsProperties, or a
complete 9ML network, using either Neuron [http://neuron.yale.edu] or NEST [http://nest-simulator.org] as the simulator backend.

Send ports and state-variables of the simulation can be recorded and saved to
file in Neo [https://pythonhosted.org/neo/] format using the ‘–record’ option, e.g.:

$ pype9 simulate my_cell.xml nest 100.0 0.01 \
 --record my_event_port ~/my_even_port.neo.pkl

For single-cell simulations, analog and event inputs stored in Neo [https://pythonhosted.org/neo/] format
can be “played” into ports of the Dynamics class using the ‘–play’ option
e.g.:

$ pype9 simulate my_cell.xml nest 100.0 0.01 \
 --record my_event_port data-dir/my_even_port.neo.pkl \
 --play my_analog_receive_port data-dir/my_input_current.neo.pkl

Properties, initial values and the initial regime (for single cells) can be
overridden with the ‘–prop’, ‘–initial_value’ and ‘–initial_regime’
respectively and must be provided for every parameter/state-variable if they
are not in the model description file.

usage: pype9 simulate [-h] [--prop PARAM VALUE UNITS]
 [--init_regime INIT_REGIME]
 [--init_value STATE-VARIABLE VALUE UNITS]
 [--record RECORD [RECORD ...]] [--play PORT FILENAME]
 [--seed SEED] [--properties_seed PROPERTIES_SEED]
 [--min_delay DELAY UNITS] [--device_delay DELAY UNITS]
 [--build_mode BUILD_MODE] [--build_dir BUILD_DIR]
 [--build_version BUILD_VERSION]
 model {neuron,nest} time timestep

Positional Arguments

	model

	Path to nineml model file which to simulate. It can be a relative path, absolute path, URL or if the path starts with ‘//’ it will be interpreted as a ninemlcatalog path. For files with multiple components, the name of component to simulated must be appended after a #, e.g. //neuron/izhikevich#izhikevich

	simulator

	Possible choices: neuron, nest

Which simulator backend to use

	time

	Time to run the simulation for (ms)

	timestep

	Timestep used to solve the differential equations (ms)

Named Arguments

	--prop

	Set the property to the given value

Default: []

	--init_regime

	Initial regime for dynamics

	--init_value

	Initial regime for dynamics

Default: []

	--record

	Record the values from the send port or state variable and the filename to save it into. Each record option can have either 2 or 4 arguments: PORT/STATE-VARIABLE FILENAME [T_START T_START_UNITS]

Default: []

	--play

	Name of receive port and filename with signal to play it into

Default: []

	--seed

	Random seed used to create network and properties

	--properties_seed

	Random seed used to create network connections and properties. If not provided it is generated from the ‘–seed’ option.

	--min_delay

	The minimum delay of the model (only applicable for single cell NEST simulations)

	--device_delay

	The delay applied to signals played into ports of the model (only applicable for NEST simulations)

	--build_mode

	The strategy used to build and compile the model. Can be one of ‘lazy’, ‘force’, ‘require’, ‘build_only’, ‘generate_only’, ‘purge’ (default “lazy”)

Default: “lazy”

	--build_dir

	Base build directory

	--build_version

	Version to append to name to use when building component classes

Note

To simulate network simulations on Neuron [http://neuron.yale.edu] over multiple cores you need to
use the MPI command mpirun -n <ncores> pype9 simulate <options>
and have installed Neuron [http://neuron.yale.edu] with the --with-mpi option
(see Installation)

Plot

Simple tool for plotting the output of PyPe9 simulations using Matplotlib [http://matplotlib.org/].
Since Pype9 output is stored in Neo [https://pythonhosted.org/neo/] format, it can be used to plot generic
Neo [https://pythonhosted.org/neo/] files but it also includes handling of Pype9-specific annotations, such as
regime transitions.

usage: pype9 plot [-h] [--save SAVE] [--dims WIDTH HEIGHT] [--hide]
 [--resolution RESOLUTION]
 filename

Positional Arguments

	filename

	Neo file outputted from a PyPe9 simulation

Named Arguments

	--save

	Location to save the figure to

	--dims

	Dimensions of the plot

Default: (10, 8)

	--hide

	Whether to show the plot or not

Default: False

	--resolution

	Resolution of the figure when it is saved

Default: 300.0

Convert

Tool to convert 9ML files between different supported formats (e.g. XML [https://www.w3.org/XML/],
JSON, YAML [http://www.yaml.org]) and 9ML versions.

usage: pype9 convert [-h] [--nineml_version NINEML_VERSION] in_file out_file

Positional Arguments

	in_file

	9ML file to be converted

	out_file

	Converted filename

Named Arguments

	--nineml_version, -v

	The version of nineml to output

Help

Prints help information associated with a PyPe9 command

usage: pype9 help [-h] cmd

Positional Arguments

	cmd

	Name of the command to print help information

Examples

The available pipelines can be listed with:

$ pype9 help
usage: pype9 <cmd> <args>

available commands:
 convert
 Converts a 9ML file from one supported format to another
 help
 Prints help information associated with a PyPe9 command
 plot
 Convenient script for plotting the output of PyPe9 simulations (actually not
 9ML specific as the signals are stored in Neo format)
 simulate
 Runs a simulation described by an Experiment layer 9ML file

More detailed help messages for each available pipeline can be viewed by
supplying its name to the help:

$ pype9 help plot
usage: pype9 plot [-h] [--save SAVE] [--dims WIDTH HEIGHT] [--hide]
 [--resolution RESOLUTION]
 filename

Convenient script for plotting the output of PyPe9 simulations (actually not
9ML specific as the signals are stored in Neo format)

positional arguments:
 filename Neo file outputted from a PyPe9 simulation

optional arguments:
 -h, --help show this help message and exit
 --save SAVE Location to save the figure to
 --dims WIDTH HEIGHT Dimensions of the plot
 --hide Whether to show the plot or not
 --resolution RESOLUTION
 Resolution of the figure when it is saved

Creating Simulations in Python

The Pype9 package is organised into sub-packages loosely corresponding to each
pipeline (e.g. simulate, plot). The simulate package contains the
sub-packages, neuron and nest, which provide the simulator-specific
calls to their respective backends.

All classes required to design and run simulations in these packages derive
from corresponding classes in the common package, which defines a
consistent Public API across all backends. Therefore, code designed to
run on with one backend can be switched to another by simply changing the
package the simulator-specific classes are imported from (like in PyNN [http://neuralensemble.org/docs/PyNN/]).

Note

The neuron and nest packages can be imported separately. Therefore,
only the simulator you plan to use needs to be available on your system.

Simulation Control

Simulation parameters such as time step, delay limits and seeds for pseudo
random number generators are set within an instance of the Simulation
class. Simulator objects (e.g. cells and connections) can only be instantiated
within the context of an active Simulation instance, and there can only
be one active Simulation instance at any time.

A Simulation is activated with the with keyword

with Simulation(dt=0.1 * un.ms, seed=12345) as sim:
 # Design simulation here

The simulation is advanced using the run method of the Simulation
instance

with Simulation(dt=0.1 * un.ms, seed=12345) as sim:
 # Create simulator objects here
 sim.run(100.0 * un.ms)

this can be done in stages if states or parameters need to be updated
mid-simulation

with Simulation(dt=0.1 * un.ms, seed=12345) as sim:
 # Create simulator objects here
 sim.run(50.0 * un.ms)
 # Update simulator object parameters/state-variables
 sim.run(50.0 * un.ms)

After the simulation context exits all objects in the simulator backend are
destroyed (unless an exception is thrown) and only recordings can be reliably
accessed from the “dead” Pype9 objects.

There are pseudo-random number generator (RNG) seeds that can be passed to
Simulation instances, seed which is used to seed the RNGs that
generate random dynamic processes during the simulation (e.g. poisson
processes), and properties_seed which is used to seed the RNG used to
generate probabilistic connectivity rules and the random distribution of cell
properties over populations. If seed is None (the default) then it is
generated from the current timestamp, if properties_seed is None then it is
derived from seed.

Cell Simulations

NineML [http://nineml.net] Dynamics classes can be translated into simulator cell objects using the
CellMetaClass class. A metaclass [https://en.wikipedia.org/wiki/Metaclass#Python_example] is class of classes, i.e. one whose
instantiation is itself a class, such as the type class.
CellMetaClass instantiations derive from the Cell class and can
be used to represent different classes of neural models, such as Izhikevich or
Hodgkin-Huxley for example. From these Cell classes as many cell
instances (with their corresponding simulator objects) can be created as
required e.g:

Create Izhikevich cell class by instantiating the CellMetaClass with a
ninml.Dynamics Izhikevich model
Izhikevich = CellMetaClass('./izhikevich.xml#Izhikevich')
Parameters and states of the cell class must be provided when the cells
are instantiated.
either as keyword args
izhi1 = Izhikevich(a=1, b=2, c=3, d=4, v=-65 * un.mV, u=14 * un.mV / un.ms)
or from a nineml.DynamicsProperties object
izhi3 = Izhikevich('./izhikevich.xml#IzhikevichBurster')

If the specified Dynamics class has not been built before the
CellMetaClass will automatically generate the required source code for
the model, compile it, and load it into the simulator namespace. This can
happen either inside or outside of an active Simulation instance.
However, the cells objects themselves must be instantiated within a
Simulation instance.

The cell class can be created outside the simulation context
Izhikevich = CellMetaClass('./izhikevich.xml#Izhikevich')
with Simulation(dt=0.1 * un.ms) as sim:
 # The cell object must be instantiated within the simulation context
 izhi = Izhikevich(a=1, b=2, c=3, d=4, v=-65 * un.mV,
 u=14 * un.mV / un.ms)
 sim.run(1000.0 * un.ms)

The data can be recorded from every send port and state variable in the NineML [http://nineml.net]
Dynamics class using the record method of the Cell class. The
recorded data can then be accessed with the recording method. The
recordings will be Neo [https://pythonhosted.org/neo/] format.

Izhikevich = CellMetaClass('./izhikevich.xml#Izhikevich')
with Simulation(dt=0.1 * un.ms) as sim:
 izhi = Izhikevich(a=1, b=2, c=3, d=4, v=-65 * un.mV,
 u=14 * un.mV / un.ms)
 # Specify the variables to record
 izhi.record('v')
 sim.run(1000.0 * un.ms)
Retrieve the recording
v = izhi.recording('v')

Transitions between regimes can be recorded using record_regime and
retrieved using regime_epochs

Izhikevich = CellMetaClass('./izhikevich.xml#Izhikevich')
with Simulation(dt=0.1 * un.ms) as sim:
 izhi = Izhikevich(a=1, b=2, c=3, d=4, v=-65 * un.mV,
 u=14 * un.mV / un.ms)
 # Specify the variables to record
 izhi.record_regime()
 sim.run(1000.0 * un.ms)
Retrieve the regime changes
epochs = izhi.regime_epochs()

Data in Neo [https://pythonhosted.org/neo/] format can be “played” into receive ports of the Cell

neo_data = neo.PickleIO('./data/my_recording.neo.pkl').read()
Izhikevich = CellMetaClass('./izhikevich.xml#Izhikevich')
with Simulation(dt=0.1 * un.ms) as sim:
 izhi = Izhikevich(a=1, b=2, c=3, d=4, v=-65 * un.mV,
 u=14 * un.mV / un.ms)
 # Play analog signal (must be of current dimension) into 'i_syn'
 # analog-receive port.
 izhi.play('i_syn', neo_data.analogsignals[0])
 sim.run(1000.0 * un.ms)

States and parameters can be accessed and set using the attributes of the
Cell objects

Izhikevich = CellMetaClass('./izhikevich.xml#Izhikevich')
with Simulation(dt=0.1 * un.ms) as sim:
 izhi = Izhikevich(a=1, b=2, c=3, d=4)
 sim.run(500.0 * un.ms)
 # Update the membrane voltage after 500 ms to 20 mV
 izhi.v = 20 * un.mV
 sim.run(500.0 * un.ms)

Event ports can be connected between individual cells

Poisson = CellMetaClass('./poisson.xml#Poisson')
LIFAlphSyn = CellMetaClass('./liaf_alpha_syn.xml#LIFAlphaSyn')
with Simulation(dt=0.1 * un.ms) as sim:
 poisson = Poisson(rate=10 * un.Hz, t_next=0.5 * un.ms)
 lif = LIFAlphaSyn('./liaf_alpha_syn.xml#LIFAlphaSynProps')
 # Connect 'spike_out' event-send port of the poisson cell to
 # the 'spike_in' event-receive port on the leaky-integrate-and-fire
 # cell
 lif.connect(poisson, 'spike_out', 'spike_in')
 sim.run(1000.0 * un.ms)

Network Simulations

Network simulations are specified in much the same way as Cell Simulations,
with the exception that there is no metaclass for Networks (Network metaclasses
will be added when the “Structure Layer” is introduced in NineML [http://nineml.net] v2).
Therefore, Network objects need to be instantiated within the simulation
context.

with Simulation(dt=0.1 * un.ms) as sim:
 # Network objects need to be instantiated within the simulation context
 network = Network('./brunel/AI.xml#AI')
 sim.run(1000.0 * un.ms)

During construction of the network, the NineML [http://nineml.net] Populations and Projections are
flattened into Component Array and Connection Group objects such
that the synapse dynamics in the projection are included in the dynamics of the
Component Array and each port connection is converted into a separate
Connection Group of static connections.

To record data, the relevant component array needs to be accessed using the
component_array or component_arrays accessors of the network class.
Then as in the Cell Simulations case the record method is used to
specify which variables to record and the recording method is used to
access the recording after the simulation.

with Simulation(dt=0.1 * un.ms) as sim:
 network = Network('./brunel/AI.xml#AI')
 # 'spike_out' is explicitly connected in the connection so it is
 # mapped to the global namespace of the flattened cell + synapses model
 network.component_array('Exc').record('spike_out')
 # State-variables of the cell dynamics are suffixed with '__cell'
 network.component_array('Inh').record('v__cell')
 # State-variables of synapses, in this case synapses from the
 # 'Inhibition' projection, are prefixed with '__<projection-name>'
 network.component_array('Exc').record('a__Inhibition')
 sim.run(1000.0 * un.ms)
exc_spikes = network.component_array('Exc').recording('spike_out')
inh_v = network.component_array('Inh').recording('v__cell')
exc_inh_a = network.component_array('Exc').recording('a__Inhibition')

Note

During the cell and synapse flattening process the names of state variables
and unconnected ports will be suffixed with __cell if they belong to the
population dynamics or __<my-projection> if they belong to the synapse
of the a projection

Network models are simulated via integration with PyNN [http://neuralensemble.org/docs/PyNN/] and therefore will run
on multiple processes using Open MPI [http://openmpi.org] (and Open MP_ for NEST [http://nest-simulator.org]) if the
calling Python script is run with mpirun/mpiexec.

Public API

The Pype9 public API consists of seven classes required to create simulations
of individual neurons or neural networks described in NineML [http://nineml.net]. All classes in
the public API have an abstract base class in the pype9.simulate.common
module and matching derived simulator-specific classes in the
pype9.simulate.neuron and pype9.simulate.nest modules.

As the simulator-specific classes have the same signatures as those in the base
module only the base module classes are described here.

Simulation

	
class pype9.simulate.common.simulation.Simulation(dt, t_start=0.0 * s, seed=None, properties_seed=None, min_delay=1.0 * ms, max_delay=10.0 * ms, code_generator=None, build_base_dir=None, **options)

	Base class of all simulation classes that prepares and runs the simulator
kernel. All simulator objects must be created within the context of a
Simulation instance.

with Simulation(dt=0.1 * un.ms, seed=12345) as sim:
 # Design simulation here

The simulation is advanced using the run method

with Simulation(dt=0.1 * un.ms, seed=12345) as sim:
 # Create simulator objects here
 sim.run(100.0 * un.ms)

After the simulation context exits all objects in the simulator backend are
destroyed (unless an exception is thrown) and only recordings can be
reliably accessed from the “dead” Pype9 objects.

	Parameters

	
	dt (nineml.Quantity (time)) – The resolution of the simulation

	t_start (nineml.Quantity (time)) – The time to start the simulation from

	seed (int | None) – The seed with which to construct the cell/network properties.
NB: This seed will only reproduce constant results if the number
of MPI nodes is constant

	properties_seed (int | None) – The seed used for random number generator used to set properties and
generate connectivity. If not provided it will be derived from the
‘seed’ argument.
NB: This seed will only reproduce constant results if the number
of MPI nodes is constant

	min_delay (nineml.Quantity (time) | None) – The minimum delay in the network. If None the min delay will be
calculated from the first network to be created (if a single cell
then it will be the same as the timestep)

	max_delay (nineml.Quantity (time) | None) – The maximum delay in the network. If None the max delay will be
calculated from the first network to be created (if a single cell
then it will be the same as the timestep)

	options (dict [https://docs.python.org/3/library/stdtypes.html#dict](str [https://docs.python.org/3/library/stdtypes.html#str], object [https://docs.python.org/3/library/functions.html#object])) – Options passed to the simulator-specific methods

	
run(self, t_stop, **kwargs)

	Run the simulation until time t_stop.

	Parameters

	t_stop (nineml.Quantity (time)) – The time to run the simulation until

CellMetaClass

	
class pype9.simulate.common.cells.CellMetaClass(component_class, **kwargs)

	Metaclass for creating simulator-specific cell classes from 9ML Dynamics
classes. Instantiating a CellMetaClass with a nineml.Dynamics instance
will generate, compile and load the required simulator-specific code and
create a class that can be used to instantiate dynamics objects.

	Parameters

	
	component_class (nineml.Dynamics) – The 9ML component class to create the Cell class for

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the cell class, which is used for the generated simulator
code. If None, the name of the component_class is used. Note, names
must be unique among classes loaded within the same simulation script.

Cell

	
class pype9.simulate.common.cells.Cell(*args, **kwargs)

	Base class for all cell classes created from the CellMetaClass. It defines
all methods that can be called on cell model objects.

	Parameters

	
	prototype (DynamicsProperties) – A dynamics properties object used as the “prototype” for the cell

	regime (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of regime the cell will be initiated in

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict](str [https://docs.python.org/3/library/stdtypes.html#str], nineml.Quantity)) – Properties and initial state variables to initiate the cell with. These
will override properties/initial-values in the prototype

	
connect(self, sender, send_port_name, receive_port_name, delay, properties=[])

	Connects an event send port from other into an event receive port in
the cell

	Parameters

	
	sender (pype9.simulator.base.cells.Cell) – The sending cell to connect the from

	send_port_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the port in the sending cell to connect to

	receive_port_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the receive port in the current cell to connect from

	delay (nineml.Quantity (time)) – The delay of the connection

	properties (list [https://docs.python.org/3/library/stdtypes.html#list](nineml.Property)) – The connection properties of the event port

	
play(self, port_name, signal, properties=[])

	Plays an analog signal or train of events into a port of the
cell

	Parameters

	
	port_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the port to play the signal into

	signal (neo.AnalogSignal | neo.SpikeTrain) – The signal to play into the cell

	properties (dict [https://docs.python.org/3/library/stdtypes.html#dict](str [https://docs.python.org/3/library/stdtypes.html#str], nineml.Quantity)) – Connection properties when playing into a event receive port
with static connection properties

	
record(self, port_name, t_start=None)

	Specify the recording of a send port or state-variable before the
simulation.

	
record_regime(self)

	Returns the current regime at each timestep. Periods spent in each
regimes can be retrieved with the regime_epochs method.

	
recording(self, port_name, t_start=None)

	Return recorded data as a dictionary containing one numpy array for
each neuron, ids as keys.

	Parameters

	port_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the port to retrieve the recording for

	
regime_epochs(self)

	Retrieves the periods spent in each regime during the simulation
in a neo.core.EpochArray

Network

	
class pype9.simulate.common.network.Network(nineml_model, build_mode='lazy', **kwargs)

	Constructs a network simulation, generating and compiling dynamics classes
as required (depending on the ‘build_mode’ option). The populations and
projections of the network are flattened so that the synapse projections
are included in the cell dynamics and the connection groups are just
static connections.

	Parameters

	nineml_model (nineml.Network | nineml.Document | URL) – A 9ML-Python model of a network (or Document containing
populations and projections for 9MLv1) or a URL referring to a 9ML
model.

	
component_array(self, name)

	Returns the component array matching the given name

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the component array

	
component_arrays

	Iterate through component arrays

	
connection_group(self, name)

	Returns the connection group matching the given name

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the component array

	
connection_groups

	Iterate through connection_groups

	
selection(self, name)

	Returns the selection matching the given name

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the selection

	
selections

	Iterate through selections

ComponentArray

	
class pype9.simulate.common.network.ComponentArray(nineml_model, build_mode='lazy', **kwargs)

	Component array object corresponds to a NineML type to be introduced in
NineMLv2 (see https://github.com/INCF/nineml/issues/46), which consists of
a dynamics class and a size. Populations and the synapses on incoming
projections.

	Parameters

	
	nineml_model (nineml.ComponentArray) – Component array nineml

	build_mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The build/compilation strategy for rebuilding the generated code, can
be one of ‘lazy’, ‘force’, ‘build_only’, ‘require’.

	
play(self, port_name, signal, properties=[])

	Plays an analog signal or train of events into a port of the dynamics
array.

	Parameters

	
	port_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the port to play the signal into

	signal (neo.AnalogSignal | neo.SpikeTrain) – The signal to play into the cell

	properties (dict [https://docs.python.org/3/library/stdtypes.html#dict](str [https://docs.python.org/3/library/stdtypes.html#str], nineml.Quantity)) – Connection properties when playing into a event receive port
with static connection properties

	
record(self, port_name, t_start=None)

	Records the port or state variable

	Parameters

	port_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the port to record

	
recording(self, port_name, t_start=None)

	Returns the recorded data for the given port name

	Parameters

	port_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the port (or state-variable) to retrieve the recorded
data for

	Returns

	recording – The recorded data in a neo.Segment

	Return type

	neo.Segment

Selection

	
class pype9.simulate.common.network.Selection(nineml_model, *component_arrays)

	A selection of cells from one or multiple component arrays. Used to
connect ConnectionGroup.

	Parameters

	
	nineml_model (nineml.Selection) – The NineML Selection object

	component_arrays (list [https://docs.python.org/3/library/stdtypes.html#list](nineml.ComponentArray)) – List of component arrays included in the selection.

ConnectionGroup

	
class pype9.simulate.common.network.ConnectionGroup(nineml_model, source, destination)

	ConnectionGroup object corresponds to a NineML type to be introduced in
NineMLv2 (see https://github.com/INCF/nineml/issues/46), which consists of
a dynamics class and a size. Only consists of references to ports on the
source and destination ComponentArrays|Selections and connectivity.

	Parameters

	
	nineml_model (nineml.ConnectionGroup) – Component array nineml

	source (ComponentArray) – Source component array

	destination (ComponentArray) – Destination component array

Developer Documentation

Contributions to Pype9 are most welcome! To contribute simply fork
Pype9 on Github [https://github.com/NeuralEnsemble/pype9] and create a pull request when you are ready to merge
your code.

Contributions are required to:
* Strictly adhere to Pep8 [https://www.python.org/dev/peps/pep-0008/] (PyLint [https://pypi.python.org/pypi/pylint] is useful for checking this)
* Not significantly decrease the code coverage [https://coveralls.io/github/NeuralEnsemble/pype9?branch=master]. Meaning that you
will probably need to add a unittest or two.

Additional Simulator Backends

An area in which Pype9 can be extended is by adding support for
additional simulator backends (e.g. Brian2 [https://brian2.readthedocs.io/en/stable/], GeNN [http://genn-team.github.io/genn/]), including any
that you may be developing.

One of the key benefits of clearly separating the model description
language (i.e. NineML [http://nineml.net]), and the associated NineML Python library [http://nineml-python.readthedocs.io/en/latest/],
from simulator-specific code is that provides a clearly defined
interface for adding support for additional simulators. Therefore,
extending Pype9 is definitely not a requirement for adding NineML [http://nineml.net]
support for your simulator (and from a language perspective a diversity
of independent tools is desirable). However, since Pype9 has already
implemented many of the menial tasks involved in working with NineML [http://nineml.net]
models, such as managing the build process and file IO, you may find it
convenient to extend Pype9’s base classes.

In order to extend Pype9’s base classes you will need to override the
following abstract methods.

Single Cell Simulations

CodeGenerator

	generate_source_files

	configure_build_files

	compile_source_files

	clean_src_dir

	clean_compile_dir

	load_libraries

Cell

	_get

	_set

	_set_regime

	record

	record_regime

	recording

	_regime_recording

	reset_recordings

	play

	connect

Network Simulations

At this stage Pype9’s network simulations are handled by PyNN [http://neuralensemble.org/PyNN/] so it
is probably only practical to add support for simulators that are
supported by PyNN. Future versions of Pype9 will likely introduce
base classes for network objects, which can be extended though.

Additional Pipelines

Pype9 has been designed to be a general umbrella containing a wide range
of pipelines for manipulating and working with NineML [http://nineml.net] models in
addition to running simulations.

Import Simulator-Specific Models

High on the list of useful additional pipelines are importer pipelines
that take models, or part thereof, written in simulator specific code
and translate them into NineML [http://nineml.net].

For example, a prototype NMODL_ and Neuron [http://neuron.yale.edu] “model view” importers
exists in the branch neuron_import at http://github.com/tclose/pype9.
It would be great to extend this to other popular simulators such as
NEST and Brian.

Graphical User Interface

Another key benefit of separating the model description from the
simulation code is that it greatly simplifies the creation of graphical
user interfaces with which to create models with. With the
NineML Python Library [http://nineml-python.readthedocs.io/en/latest/] able to read JSON files, a promising approach
would be to create a javascript GUI that can read, modify and write
NineML [http://nineml.net] files to JSON that could then be simulated with different
backends.

Unsupported 9ML

NineML [http://nineml.net] aims to be a comprehensive description language for neural simulation. This
means that it allows the expression of some uncommon configurations that are
difficult to implement in Neuron [http://neuron.yale.edu] and NEST [http://nest-simulator.org]. Work is planned to make the Neuron [http://neuron.yale.edu]
and NEST [http://nest-simulator.org] pipelines in Pype9 fully support NineML [http://nineml.net], however until then the following
restrictions apply to models that can be used with Pype9.

	synapses must be linear (to be relaxed in v0.2)

	synapses can only have one variable that varies over a projection (e.g.
weight) (to be relaxed in v0.2)

	no analog connections between populations (i.e. gap junctions) (gap
junctions to be implemented in v0.2)

	only one event send port per cell (current limitation of Neuron [http://neuron.yale.edu]/NEST [http://nest-simulator.org])

	names given to NineML [http://nineml.net] elements are not escaped and therefore can clash with
built-in keywords and some PyPe9 method names (e.g. ‘lambda’ is a reserved
keyword in Python). Please avoid using names that clash with C++ or Python
keywords (all 9ML names will be escaped in PyPe9 v0.2).

Getting help

Mailing list: nineml-users@incf.org

NeuralEnsemble Google group [http://groups.google.com/group/neuralensemble]

If you find a bug or would like to add a new feature to Pype9 package, please go to
https://github.com/NeuralEnsemble/Pype9/issues/. First check that there is not an
existing ticket for your bug or request, then click on “New issue” to create a
new ticket (you will need a GitHub account, but creating one is simple and painless). Please add the label “Python”
to the ticket.

Index

 C
 | N
 | P
 | R
 | S

C

 	
 	Cell (class in pype9.simulate.common.cells)

 	CellMetaClass (class in pype9.simulate.common.cells)

 	component_array() (pype9.simulate.common.network.Network method)

 	component_arrays (pype9.simulate.common.network.Network attribute)

 	
 	ComponentArray (class in pype9.simulate.common.network)

 	connect() (pype9.simulate.common.cells.Cell method)

 	connection_group() (pype9.simulate.common.network.Network method)

 	connection_groups (pype9.simulate.common.network.Network attribute)

 	ConnectionGroup (class in pype9.simulate.common.network)

N

 	
 	Network (class in pype9.simulate.common.network)

P

 	
 	play() (pype9.simulate.common.cells.Cell method)

 	(pype9.simulate.common.network.ComponentArray method)

R

 	
 	record() (pype9.simulate.common.cells.Cell method)

 	(pype9.simulate.common.network.ComponentArray method)

 	record_regime() (pype9.simulate.common.cells.Cell method)

 	
 	recording() (pype9.simulate.common.cells.Cell method)

 	(pype9.simulate.common.network.ComponentArray method)

 	regime_epochs() (pype9.simulate.common.cells.Cell method)

 	run() (pype9.simulate.common.simulation.Simulation method)

S

 	
 	Selection (class in pype9.simulate.common.network)

 	selection() (pype9.simulate.common.network.Network method)

 	
 	selections (pype9.simulate.common.network.Network attribute)

 	Simulation (class in pype9.simulate.common.simulation)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/logo_small.png
)

2l

&, |

il

o

l

_static/minus.png

_static/ajax-loader.gif

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Pype9

 		
 Installation

 		
 Simulator Backends

 		
 Manual Installation from Source (Linux/MacOS)

 		
 Homebrew/Linuxbrew (MacOS/Linux)

 		
 Install scripts (Linux/MacOS)

 		
 Docker (Windows/Linux/MacOS)

 		
 Command Line Interface

 		
 Simulate

 		
 Positional Arguments

 		
 Named Arguments

 		
 Plot

 		
 Positional Arguments

 		
 Named Arguments

 		
 Convert

 		
 Positional Arguments

 		
 Named Arguments

 		
 Help

 		
 Positional Arguments

 		
 Examples

 		
 Creating Simulations in Python

 		
 Simulation Control

 		
 Cell Simulations

 		
 Network Simulations

 		
 Public API

 		
 Simulation

 		
 CellMetaClass

 		
 Cell

 		
 Network

 		
 ComponentArray

 		
 Selection

 		
 ConnectionGroup

 		
 Developer Documentation

 		
 Additional Simulator Backends

 		
 Single Cell Simulations

 		
 Network Simulations

 		
 Additional Pipelines

 		
 Import Simulator-Specific Models

 		
 Graphical User Interface

 		
 Unsupported 9ML

 		
 Getting help

_static/up.png

_static/up-pressed.png

